Search results for "Deep-level transient spectroscopy"

showing 3 items of 3 documents

Negative U‐properties of the oxygen‐vacancy in ZnO

2006

It is shown that the intensity of the oxygen vacancy (VO) related emission in ZnO at 2.45 eV correlates to the concentration of the donor level E4. E4 is located 530 meV below the conduction band and attributed to the VO0/++ recharging. Deep level transient spectroscopy (DLTS) experiments with optical excitation locate the VO2+/+ level position 140 meV below the conduction band and give evidence for the “negative- U” properties of the oxygen vacancies in ZnO. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Deep-level transient spectroscopyChemistrychemistry.chemical_elementAtomic physicsCondensed Matter PhysicsOxygenConduction bandExcitationOxygen vacancyIntensity (physics)physica status solidi c
researchProduct

Deep traps in InGaN/GaN single quantum well structures grown with and without InGaN underlayers

2020

The electrical properties and deep trap spectra were compared for near-UV GaN/InGaN quantum well (QW) structures grown on free-standing GaN substrates. The structures differed by the presence or absence of a thin (110 nm) InGaN layer inserted between the high temperature GaN buffer and the QW region. Capacitance-voltage profiling with monochromatic illumination showed that in the InGaN underlayer (UL), the density of deep traps with optical threshold near 1.5 eV was much higher than in the QW and higher than for structures without InGaN. Irradiation with 5 MeV electrons strongly increased the concentration of these 1.5 eV traps in the QWs, with the increase more pronounced for samples witho…

electronMaterials scienceDeep-level transient spectroscopy02 engineering and technologyElectronTrapping010402 general chemistrySettore ING-INF/01 - Elettronica01 natural sciencesSettore FIS/03 - Fisica Della MateriaSpectral linelaw.inventionInGaN underlayerRadiation tolerancelawMaterials ChemistryIrradiationInGaN/GaN single quantum well structuresdefectsQuantum wellbusiness.industryMechanical Engineeringlight-emitting-diodesMetals and Alloys021001 nanoscience & nanotechnologyn/a OA procedure0104 chemical sciencesefficiencyMechanics of MaterialsOptoelectronics0210 nano-technologybusinessDeep traps in nitride semiconductorperformanceLight-emitting diodeJournal of Alloys and Compounds
researchProduct

Intrinsic and extrinsic point-defects in vapor transport grown ZnO bulk crystals

2006

Vapor transport grown ZnO bulk crystals were characterized by electrical, optical and magnetic resonance spectroscopy. The experiments show that the residual carrier concentration is caused by residual H, Al, Ga, and oxygen vacancies in the material. Annealing the samples in O 2 at about 1000 °C (2 atm, 20 h) reduces the H and V O donor concentration by typical one order of magnitude. The photoluminescence and DLTS results suggest a correlation between the broad unstructured emission at 2.45eV (green band) and a donor level 530 meV below the conduction band (E4).

Materials sciencePhotoluminescenceDeep-level transient spectroscopyAnnealing (metallurgy)Analytical chemistryCrystal structureCondensed Matter PhysicsCrystallographic defectElectronic Optical and Magnetic MaterialsNuclear magnetic resonanceCharge carrierElectrical and Electronic EngineeringSpectroscopyLuminescencePhysica B: Condensed Matter
researchProduct